7 research outputs found

    Huddle test measurement of a near Johnson noise limited geophone

    Get PDF
    In this paper, the sensor noise of two geophone configurations (L-22D and L-4C geophones from Sercel with custom built amplifiers) was measured by performing two huddle tests. It is shown that the accuracy of the results can be significantly improved by performing the huddle test in a seismically quiet environment and by using a large number of reference sensors to remove the seismic foreground signal from the data. Using these two techniques, the measured sensor noise of the two geophone configurations matched the calculated predictions remarkably well in the bandwidth of interest (0.01 Hz–100 Hz). Low noise operational amplifiers OPA188 were utilized to amplify the L-4C geophone to give a sensor that was characterized to be near Johnson noise limited in the bandwidth of interest with a noise value of 10−11 m/Hz⎯⎯⎯⎯⎯√10−11 m/Hz at 1 Hz

    Passive-performance, analysis, and upgrades of a 1-ton seismic attenuation system

    Get PDF
    The 10m Prototype facility at the Albert-Einstein-Institute (AEI) in Hanover, Germany, employs three large seismic attenuation systems to reduce mechanical motion. The AEI Seismic-Attenuation-System (AEI-SAS) uses mechanical anti-springs in order to achieve resonance frequencies below 0.5Hz. This system provides passive isolation from ground motion by a factor of about 400 in the horizontal direction at 4Hz and in the vertical direction at 9Hz. The presented isolation performance is measured under vacuum conditions using a combination of commercial and custom-made inertial sensors. Detailed analysis of this performance led to the design and implementation of tuned dampers to mitigate the effect of the unavoidable higher order modes of the system. These dampers reduce RMS motion substantially in the frequency range between 10 and 100Hz in 6 degrees of freedom. The results presented here demonstrate that the AEI-SAS provides substantial passive isolation at all the fundamental mirror-suspension resonances

    Local active isolation of the AEI-SAS for the AEI 10 m prototype facility

    Get PDF
    Abstract: High precision measurements in various applications rely on active seismic isolation to decouple the experiment from seismic motion; therefore, closed feed-back control techniques such as sensor blending and sensor correction are commonly implemented. This paper reviews the active isolation techniques of the Albert Einstein Institute seismic attenuation system (AEI-SAS). Two approaches to improve the well known techniques are presented. First, the influence of the sensor basis for the signal-to-noise ratio in the chosen coordinate system is calculated and second, a procedural optimization of blending filters to minimize the optical table velocity is performed. Active isolation techniques are adapted to the mechanical properties and the available sensors and actuators of the AEI-SAS. The performance of the final isolation is presented and limitations to the isolation are analyzed in comparison to a noise model. The optical table motion reaches approximately 8 × 1 0 − 10 m / H z at 1 Hz, reducing the ground motion by a factor of approximately 100

    Concepts and research for future detectors

    No full text
    Technologies, design aspects and recent progresses for future gravitational wave (GW) detectors are mentioned in this summary of the C4 session of the Amaldi 10 conference
    corecore